Chapter 2.5.10
Module: 2.
Nutritional supplements bioactivity, functional properties and safety: in vitro & in vivo studies
Unit: 2.5.
Animal and cell culture models of skin homeostasis and repair, and cancer
Chapter: 2.5.10.
References
References
- Dhivya, S., V.V. Padma, and E. Santhini, Wound dressings - a review. Biomedicine (Taipei), 2015. 5(4): p. 22.
- Li, J., J. Chen, and R. Kirsner, Pathophysiology of acute wound healing. Clin Dermatol, 2007. 25(1): p. 9-18.
- Koivisto, L., et al., Integrins in Wound Healing. Adv Wound Care (New Rochelle), 2014. 3(12): p. 762-783.
- Whitney, J.D., Overview: acute and chronic wounds. Nurs Clin North Am, 2005. 40(2): p. 191-205, v.
- Morhenn, V.B., The Relationship of Wound Healing with Psoriasis and Multiple Sclerosis. Adv Wound Care (New Rochelle), 2018. 7(6): p. 185-188.
- Grada, A., J. Mervis, and V. Falanga, Research Techniques Made Simple: Animal Models of Wound Healing. J Invest Dermatol, 2018. 138(10): p. 2095-2105.e1.
- Ansell, D.M., et al., A statistical analysis of murine incisional and excisional acute wound models. Wound Repair Regen, 2014. 22(2): p. 281-7.
- Masson-Meyers, D.S., et al., Experimental models and methods for cutaneous wound healing assessment. Int J Exp Pathol, 2020.
- Shu-Jen Chang, D.S., Gang-Yi Fan, Juin-Hong Cherng and Yi-Wen Wang, Animal Models of Burn Wound Management. Animal Models in Medicine and Biology, 2019.
- Stephens, P., M. Caley, and M. Peake, Alternatives for animal wound model systems. Methods Mol Biol, 2013. 1037: p. 177-201.
- Soboleva, A.G., A.V. Mezentsev, and S.A. Bruskin, [Genetically modified animals as model systems of psoriasis]. Molekuliarnaia biologiia, 2014. 48(4): p. 587-599.
- Rommerswinkel, N., et al., Analysis of cell migration within a three-dimensional collagen matrix. J Vis Exp, 2014(92): p. e51963.
- Ehrlich, H.P. and K.E. Moyer, Cell-populated collagen lattice contraction model for the investigation of fibroblast collagen interactions. Methods Mol Biol, 2013. 1037: p. 45-58.
- Rikken, G., H. Niehues, and E.H. van den Bogaard, Organotypic 3D Skin Models: Human Epidermal Equivalent Cultures from Primary Keratinocytes and Immortalized Keratinocyte Cell Lines. Methods Mol Biol, 2020. 2154: p. 45-61.
- Singletary, K., Diet, natural products and cancer chemoprevention. J Nutr, 2000. 130(2S Suppl): p. 465s-466s.
- Dusinska, M., et al., Critical Evaluation of Toxicity Tests. 2012. p. 63-83.
- Ren, N., et al., The various aspects of genetic and epigenetic toxicology: testing methods and clinical applications. J Transl Med, 2017. 15(1): p. 110.
- Hasselgren, C., et al., Genetic toxicology in silico protocol. Regul Toxicol Pharmacol, 2019. 107: p. 104403.
- Downes, N. and J. Foster,Regulatory Forum Opinion Piece: Carcinogen Risk Assessment: The Move from Screens to Science. Toxicol Pathol, 2015. 43(8): p. 1064-73.
- COC, Alternatives to the 2-year Bioassay. Committee on Carcinogenicity of Chemicals in Food, Consumer Products and the Environment (COC), 2019. Statement COC/G07 - Version 1.1
- Kersten, K., et al., Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med, 2017. 9(2): p. 137-153.
- Jung, J., Human tumor xenograft models for preclinical assessment of anticancer drug development. Toxicol Res, 2014. 30(1): p. 1-5.
- Ruggeri, B.A., F. Camp, and S. Miknyoczki, Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem Pharmacol, 2014. 87(1): p. 150-61.
- Annibali, D., et al., Development of Patient-Derived Tumor Xenograft Models. Methods Mol Biol, 2019. 1862: p. 217-225.
- Meraz, I.M., et al., An Improved Patient-Derived Xenograft Humanized Mouse Model for Evaluation of Lung Cancer Immune Responses. Cancer Immunol Res, 2019. 7(8): p. 1267-1279.